Abstract

The objective of the study was to obtain multifunctional core shell nanostructures of superparamagnetic iron oxide nanoparticles (Fe3O4) coated with various ionic biopolymers that can optimize toxicity to healthy cells, colloidal instabilities and drug loading capacities. These nanostructures can also allow drug delivery to tumor tissue because of their magnetic properties, accumulation and drug release at tumor site could be controlled by means of an external magnetic field.The impact of the biopolymers with different ionic properties to final core shell structures were investigated and compared in terms of their colloidal properties, cytotoxicities, drug adsorption and drug delivery capacities. Besides, the effect of the surface charges on the healthy cells and cancer cells is very important factor affecting toxicity and drug delivery. The results showed that the drug delivery agents coated with cationic biopolymers with cationic surface properties significantly reduced cancer cell viability compared to the anionic and nonionic polymer coatings even though their drug loading capacities were found to be the lowest.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.