Abstract

ABSTRACTThe generation of hot charge carriers within a solid bombarded by charged particles is investigated using biased thin film metal-insulator-metal (MIM) devices. For slow, highly charged ions approaching a metal surface the main dissipation process is electronic excitation of the substrate, leading to electron emission into the vacuum and internal electron emission across the MIM junction. In order to gain a deeper understanding of the distribution and transport of the excited charge carriers leading to the measured device current, we compare ion induced and electron induced excitation processes in terms of absolute internal emission yields as well as their dependence on the applied bias voltage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call