Abstract

In this paper, an attempt has been made to evaluate the internal heat transfer coefficient of single and double slope passive solar stills in summer as well as winter climatic conditions for three different water depths (0.01, 0.02 and 0.03 m) by various thermal models. The experimental validation of distillate yield using different thermal models was carried out for composite climate of New Delhi, India (latitude 28°35′N, longitude 77°12′E). By comparing theoretical values of hourly yield with experimental data it has been observed that Dunkle's model gives better agreement between theoretical and experimental results. Further, Dunkle's model has been used to evaluate the internal heat transfer coefficient for both single and double slope passive solar stills. With the increase in water depth from 0.01 m to 0.03 m there was a marginal variation in the values of convective heat transfer coefficients. It was also observed that on annual basis output of a single slope single slope solar still is better (499.41 l/m2) as compared with a double slope solar still (464.68 l/m2).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call