Abstract

BackgroundAccurate measurements of in-vivo knee joint kinematics are essential to elucidate healthy knee motion and the changes that accompany injury and repair. Although numerous experimental measurements have been reported, the accurate non-invasive analysis of in-vivo knee kinematics remains a challenge in biomechanics. Research questionThe study objective was to investigate in-vivo knee kinematics before, at, and after contact during walking and running using a combined high-speed dual fluoroscopic imaging system (DFIS) and magnetic resonance (MR) imaging technique. MethodsThree-dimensional (3D) knee models of ten participants were created using MR images. Knee kinematics during walking and running were determined using high-speed DFIS. The 3D knee models were then related to fluoroscopic images to obtain in-vivo six-degrees-of-freedom knee kinematics. ResultsBefore contact knee flexion, external femoral rotation, and proximal-distal distance were 11.9°, 3.4°, and 1.0 mm greater during running compared to walking, respectively. Similar differences were observed at initial contact (9.9°, 7.9°, and 0.9 mm, respectively) and after contact (6.4°, 2.2°, and 0.8 mm, respectively). Posterior femoral translation at initial contact was also increased during running compared to walking. SignificanceThis study demonstrated accurate instantaneous in-vivo knee kinematic characteristics that may further the understanding of the intrinsic biomechanics of the knee during gait.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.