Abstract

Radar-based remote sensing for measurement of ocean surface waves presents advantages over conventional point sensors such as wave buoys. As its use becomes more widespread, it is important to understand the sensitivity of the extracted wave parameters to the characteristics of the radar and the scatterers. To examine such issues, experiments were performed offshore of the Scripps Institution of Oceanography pier in July 2010. Radar measurements in low wind speeds were performed with a dual-polarized high-resolution X-band pulse-Doppler radar at low grazing angles along with two independent measurements of the surface waves using conventional sensors, a GPS-based buoy, and an ultrasonic array. Comparison between radar cross section (RCS) and Doppler modulations shows peak values occurring nearly in-phase, in contrast with tilt modulation theory. Spectral comparisons between Doppler-based and RCS-based spectra show that Doppler-based spectra demonstrate greater sensitivity to swell-induced modulations, whereas RCS-based spectra show greater sensitivity to small-scale modulations (or generally have more noise at high frequency), and they equally capture energy at the wind wave peak. Doppler estimates of peak period were consistent with the conventional sensors, whereas the RCS differed in assignment of peak period to wind seas rather than swell in a couple of cases. Higher order period statistics of both RCS and Doppler were consistent with the conventional sensors. Radar-based significant wave heights are lower than buoy-based values and contain nontrivial variability of ∼33%. Comparisons between HH and VV polarization data show that VV data more accurately represent the wave field, particularly as the wind speeds decrease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.