Abstract

Deep decarbonization is the goal of modern power systems, so it is inevitable that large-scale wind farms will be integrated into systems. This also gives rise to many problems, which have been studied in detail in the literature. However, these studies basically have two deficiencies. One is to assume that traditional generator units are fully loaded, and the other is not to compare the differences in the impact of different types of wind farm. This paper discusses these two points in detail. Taking a series-compensated transmission system as the research object, and assuming that the wind farm only replaces part of the power of the traditional generator unit in the transition period of energy conversion, the difference between the torsional vibration behaviors of the traditional unit caused by adopting different types of wind farm is discussed. The results of the study show that the impact of integration of the type 3 wind farm is dominated by the induction generator effect of doubly fed induction generator units. The penetration rate as low as 19% could cause instability. However, the paralleled metal-oxide varistor can effectively improve the stability. For the type 4 wind farm, the dominant factor turns out to be the de-rating operations of the steam turbine generator unit. The allowable penetration rate depends on the turbine damping. When the turbine damping is sufficient, the penetration rate can be as high as 87.5%. In conclusion, in order to integrate wind farms into a series compensated transmission system, one should not only focus on the compensation factor to avoid the sub-synchronous torsional vibrations, but also pay attention to the types of wind farm as well as the penetration rate. The findings can be used as the decision-making basis for the integration of wind farms during the energy transition period.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call