Abstract
To evaluate two commonly used respiratory motion correction techniques for coronary magnetic resonance angiography (MRA) regarding their dependency on motion estimation accuracy and final image quality and to compare both methods to the respiratory gating approach used in clinical practice. Ten healthy volunteers were scanned using a non-Cartesian radial phase encoding acquisition. Respiratory motion was corrected for coronary MRA according to two motion correction techniques, image-based (IMC) and reconstruction-based (RMC) respiratory motion correction. Both motion correction approaches were compared quantitatively and qualitatively against a reference standard navigator-based respiratory gating (RG) approach. Quantitative comparisons were performed regarding visible vessel length, vessel sharpness, and total acquisition time. Two experts carried out a visual scoring of image quality. Additionally, numerical simulations were performed to evaluate the effect of motion estimation inaccuracy on RMC and IMC. RMC led to significantly better image quality than IMC (P's paired Student's t-test were smaller than 0.001 for vessel sharpness and visual scoring). RMC did not show a statistically significant difference compared to reference standard RG (vessel length [99% confidence interval]: 86.913 [83.097-95.015], P = 0.107; vessel sharpness: 0.640 [0.605-0.802], P = 0.012; visual scoring: 2.583 [2.410-3.424], P = 0.018) in terms of vessel visualization and image quality while reducing scan times by 56%. Simulations showed higher dependencies for RMC than for IMC on motion estimation inaccuracies. RMC provides a similar image quality as the clinically used RG approach but almost halves the scan time and is independent of subjects' breathing patterns. Clinical validation of RMC is now desirable.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.