Abstract

I-131 is a frequently used isotope for radionuclide therapy. This technique for cancer treatment requires a pre-therapeutic dosimetric study. The latter is usually performed (for this radionuclide) by directly imaging the uptake of the therapeutic radionuclide in the body or by replacing it by one of its isotopes, which are more suitable for imaging. This study aimed to compare the image quality that can be achieved by three iodine isotopes: I-131 and I-123 for single-photon emission computed tomography imaging, and I-124 for positron emission tomography imaging. The imaging characteristics of each isotope were investigated by simulated data. Their spectrums, point-spread functions, and contrast-recovery curves were drawn and compared. I-131 was imaged with a high-energy all-purpose (HEAP) collimator, whereas two collimators were compared for I-123: low-energy high-resolution (LEHR) and medium energy (ME). No mechanical collimation was used for I-124. The influence of small high-energy peaks (>0.1%) on the main energy window contamination were evaluated. Furthermore, the effect of a scattering medium was investigated and the triple energy window (TEW) correction was used for spectral-based scatter correction. Results showed that I-123 gave the best results with a LEHR collimator when the scatter correction was applied. Without correction, the ME collimator reduced the effects of high-energy contamination. I-131 offered the worst results. This can be explained by the large amount of septal penetration from the photopeak and by the collimator, which gave a low spatial resolution. I-124 gave the best imaging properties owing to its electronic collimation (high sensitivity) and a short coincidence time window.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call