Abstract

Abstract The present paper proposes a thorough comparison of twenty hyperelastic models for rubber-like materials. The ability of these models to reproduce different types of loading conditions is analyzed thanks to two classical sets of experimental data. Both material parameters and the stretch range of validity of each model are determined by an efficient fitting procedure. Then, a ranking of these twenty models is established, highlighting new efficient constitutive equations that could advantageously replace well-known models, which are widely used by engineers for finite element simulation of rubber parts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.