Abstract

Permeability coefficients of hydrogen sulfide in fluorinated polymers are anomalously low when compared to its permeability in nonfluorinated polymers. As a result, fluoropolymer membranes have unusual selectivities for gas pairs involving H2S. For example, while the mixture CO2/H2S selectivity is 0.66 for nonfluorinated, rubbery poly(dimethylsiloxane), this selectivity is 8.0 for a fluoroelastomer composed of tetrafluoroethylene, perfluoromethyl vinyl ether, and perfluoro-8-cyano-5-methyl-3,6-dioxa-1-octene (TFE/PMVE/8CNVE) and 27 for a glassy, cyclic perfluoroether (Cytop) under similar test conditions. The low H2S permeability in fluoropolymers is caused primarily by unexpectedly low H2S solubility in the fluorinated polymer matrices. For instance, H2S solubility in a Teflon AF copolymer of tetrafluoroethylene and 2,2-bis(trifluoromethyl)-4,5-difluoro-1,3-dioxole is approximately 5 times lower than the value predicted by a correlation of solubility with gas critical temperature. This low solubility is ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.