Abstract

Oxygen-17 nuclear magnetic resonance (NMR) transverse relaxation rates for bovine and caprine casein micelles at various temperatures were analyzed by nonlinear regression analysis and a protein activity model. The dependence of the NMR transverse relaxation rates was markedly nonlinear due to interactions between protein molecules. Temperature dependences of the hydration parameters of the bovine and caprine casein micelles were in accordance with the hypothesis that hydrophobic interactions are the predominant forces responsible for the self-association of the caseins. Relaxation differences between reconstituted micelles of bovine and caprine caseins strongly suggest that important structural dissimilarities exist between these milk proteins that are due to differences in the ratios of αs1- to β-casein. A higher degree of hydration, characteristic of a more open and looser structure, is observed for caprine casein micelles high in αs1-casein at 21 and 37 °C. The observed hydration behavior of bovine ca...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.