Abstract

To compare the permeability characteristics of HT29-18-C1 colonic epithelial cell line with Caco-2, an established model of intestinal drug transport. Cell lines were grown as epithelial monolayers. Permeability was measured over a range of transepithelial electrical resistance (Rt) using a group of drug compounds. HT29-18-C1 develop Rt slowly when grown in culture, allowing permeability to be measured over a wide range (80-600 Omega x cm2). In contrast, Caco-2 monolayers rapidly develop Rt of approximately equal 300 Omega x cm2 and require Ca2+ -chelation to generate Rt equivalent to human intestine (60-120 Omega x cm2). Permeability of atenolol, ranitidine, cimetidine, hydrochlorothiazide and mannitol across HT29-18-C1 decreased 4-5 fold as Rt developed from 100-300 Omega x cm2 indicating they permeate via the paracellular route. In contrast, ondansetron showed no difference in permeability with changing Rt consistent with transcellular permeation. Permeability profiles across low Rt HT29-18C1 and pulse EGTA-treated Caco-2 monolayers were the same for all 5 paracellular drugs suggesting that transient Ca2+ removal does not alter selectivity of the tight junctions. Permeabilities of cimetidine, hydrochlorothiazide and atenolol across 100 Omega x cm2 HT29-18-C1 monolayers reflect more closely those reported for the human ileum in vivo than did mature Caco-2 monolayers. HT29-18-C1 monolayers can be used to study drug permeability at Rt values similar to human intestine without the need for Ca2+ chelation. As such, they offer a useful alternative to Caco-2 for modelling intestinal drug absorption.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.