Abstract

Homogenization of daily temperature series is a fundamental step for climatological analyses. In the last decades, several methods have been developed, presenting different statistical and procedural approaches. In this study, four homogenization methods (together with two variants) have been tested and compared. This has been performed constructing a benchmark dataset, where segments of homogeneous series are replaced with simultaneous measurements from neighboring homogeneous series. This generates inhomogeneous series (the test set) whose homogeneous version (the benchmark set) is known. Two benchmark datasets are created. The first one is based on series from the Czech Republic and has a high quality, high station density, and a large number of reference series. The second one uses stations from all Europe and presents more challenges, such as missing segments, low station density, and scarcity of reference series. The comparison has been performed with pre-defined metrics which check the statistical distance between the homogenized versions and the benchmark. Almost all homogenization methods perform well on the near-ideal benchmark (maximum relative root mean square error (rRMSE): 1.01), while on the European dataset, the homogenization methods diverge and the rRMSE increases up to 1.87. Analyses of the percentages of non-adjusted inhomogeneous data (up to 39%) and substantial differences in the trends among the homogenized versions helped identifying diverging procedural characteristics of the methods. These results add new elements to the debate about homogenization methods for daily values and motivate the use of realistic and challenging datasets in evaluating their robustness and flexibility.

Highlights

  • Homogenization of climatic data is a fundamental step in any climatological analyses

  • The introduced metrics have been used to evaluate the performance of the homogenization methods on the Czech dataset

  • First inspection is performed with the relative RMSE (rRMSE), taking the benchmark version as reference, here lowest values indicate the best performances

Read more

Summary

Introduction

Homogenization of climatic data is a fundamental step in any climatological analyses. Human intervention on measuring stations induces sharp or gradual changes to temperature time series, affecting the reliability of the climatological analyses. While initially the focus has been on the adjustment of annual, seasonal, or monthly series (mainly studying the changes on the first moments of the temperature distribution) in the last two decades, several studies have focused attention on daily values and on the effects on extreme events, which have more effect on higher moments

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.