Abstract
ABSTRACT To map and manage forest vegetation including wetland communities, remote sensing technology has been shown to be a valid and widely employed technology. In this paper, two ecologically different study areas were evaluated using free and widely available high-resolution multispectral National Agriculture Imagery Program (NAIP) and ultra-high-resolution multispectral unmanned aerial vehicle (UAV) imagery located in the Upper Great Lakes Laurentian Mixed Forest. Three different machine learning algorithms, random forest (RF), support vector machine (SVM), and averaged neural network (avNNet), were evaluated to classify complex natural habitat communities as defined by the Michigan Natural Features Inventory. Accurate training sets were developed using both spectral enhancement and transformation techniques, field collected data, soil data, texture, spectral indices, and expert knowledge. The utility of the various ancillary datasets significantly improved classification results. Using the RF classifier, overall accuracies (OA) between 83.8% and 87.7% with kappa (k) values between 0.79 and 0.85 for the NAIP imagery and between 87.3% and 93.7% OA with k values between 0.83 and 0.92 for the UAV dataset were achieved. Based on the results, we concluded RF to be a robust choice for classifying complex forest vegetation including surrounding wetland communities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.