Abstract

Individual training responses among endurance athletes are determined by a complex interplay between training load, recovery and genetic influence. The present study used a multidisciplinary approach to compare high- and low-responders following a 6-month training period in endurance athletes transferring to cross-country (XC) skiing. Twenty-three endurance-trained athletes (14 runners and 9 rowers/kayakers; 14 men and 9 women) were classified as high (n = 9) or low-responders (n = 11) based on pre- to post changes in treadmill running, roller-ski skating and double-poling ergometry performances following 6-months of standardized XC ski-specific training. Physiological and technical capacities during these same modes were monitored pre and post. In addition, training volume, intensity, mode and session rating of perceived exertion (sRPE) training load were quantified daily. Finally, qualitative interviews of the athlete's personal coaches were performed after the intervention. There were no differences between groups with respect to physiological baseline characteristics. High-responders improved maximum oxygen uptake (VO2max) in treadmill running (5.5 ± 7.0% change from pre- to post) as well as peak oxygen uptake (VO2peak; 7.3 ± 7.0%) and power output at 4 mmol·L−1 (37.7 ± 28.2%) treadmill roller-ski skating which differed from a corresponding non-significant change in low-responders (−1.2 ± 3.6%, −2.7 ± 3.7% and 8.2 ± 12.5%; all P ≤ 0.05). VO2peak in double-poling ergometry did not change in any group, whereas gross efficiency and cycle length in roller-ski skating improved in both groups. High-responders performed greater training loads (weekly load: 3825 ± 1013 vs. 3228 ±.748 and load/volume ratio: 4.9 ± 0.6 vs. 4.2 ± 0.5; both P ≤ 0.05) and had lower incident of injury/illness (5 ± 3 vs. 10 ± 5 days; P = 0.07). Their coaches highlighted high motivation to train and compete, together with the ability to build a strong coach-athlete relationship, to separate high- from low-responders. In conclusion, high-responders to 6-months of standardized XC ski-specific training demonstrates greater improvement in maximal/peak aerobic capacity, which was coincided by higher training loads, greater perceived effort during sessions and lower incidents of injury and illness in comparison to their lower-responding counterparts. Possibly, the higher motivation and stronger coach-athlete relationships in high-responders contributed to more individually optimized training and recovery routines, and thereby more positive performance-development.

Highlights

  • Individual training responses among endurance athletes are determined by a complex interplay between training load and the subsequent recovery, in which pre-training status and genetic influence plays additional roles (Mann et al, 2014)

  • The main principles of elite endurance training are relatively similar across athletes and endurance sports (Stöggl and Sperlich, 2015); individual manipulation of training load is required to optimize an individual athlete’s training response and avoid negative outcomes such as injury, illness, non-functional overreaching and/or overtraining (Halson, 2014; Mujika, 2017)

  • The endurance training follows a typical polarized intensity distribution consisting of large amounts of low-intensity training (LIT) and moderate amounts of high-intensity training (HIT) (Sandbakk and Holmberg, 2017)

Read more

Summary

Introduction

Individual training responses among endurance athletes are determined by a complex interplay between training load (i.e., volume, intensity and frequency) and the subsequent recovery (e.g., sleep, nutrition and non-training daily stressors), in which pre-training status and genetic influence plays additional roles (Mann et al, 2014). Enhanced understanding of underlying factors for individual differences in the tolerance and response to training is of uttermost importance (Mann et al, 2014; Mujika, 2017), no previous study has examined factors differentiating high- from lowresponders following long-term periods of standardized endurance training. Cross-country (XC) skiers perform high loads of endurance training and achieve some of the highest reported maximum oxygen uptakes (VO2max) in the scientific literature (Holmberg, 2015; Sandbakk and Holmberg, 2017). The physiological capacities and training characteristics of successful XC skiers (Sandbakk and Holmberg, 2017; Solli et al, 2017), and differences among their less successful counterparts (Sandbakk et al, 2011, 2016), are well-established in the scientific literature, the understanding of accompanying factors influencing individual performance-adaptations on the journey toward excellence is limited

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.