Abstract

The screening and testing of fuel cell electrocatalysts often involves comparisons under conditions that do not closely match their use in membrane electrode assemblies. We compared the activities of several commercial and homemade Pt and PtRu catalysts for electrochemical methanol oxidation by four different techniques; disk electrode linear sweep voltammetry in aqueous methanol/sulfuric acid solutions, optical fluorescence detection in aqueous methanol solutions containing a fluorescent acid-base indicator, steady-state voltammetry in a 25 electrode array fuel cell with a large common counter electrode, and steadystate voltammetry in a conventional direct methanol fuel cell. The fluorescence detection method, which is a high-throughput technique developed for large arrays of electrocatalysts, can distinguish active from inactive catalysts, but it does not accurately rank active catalysts. Both the disk electrode and array fuel cell methods gave a reliable ranking of the catalysts studied. The best agreement occurred between the array fuel cell and single electrode fuel cell catalyst rankings. A wide range of catalytic activities was found for PtRu catalysts of the same nominal composition that were prepared by different methods. © 2005 The Electrochemical Society. All rights reserved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.