Abstract

AbstractFollowing the European directive to reduce CO2 emissions of existing buildings by improving energy efficiency, internal insulation systems play a central role in the renovation of historically valuable buildings which cannot be insulated from the outside for reasons of monumental protection, or in cases where no additional exterior space is available. However, besides the thermal property of insulation systems, there are other relevant properties to be considered before choosing an internal insulation system, such as the hygrothermal behavior which plays a particularly important role in diffusion‐open interior insulation systems. As the internal insulation layer reduces the temperature of the existing wall during the heating season, its drying potential after rain events is considerably reduced. In addition to the effects of moisture from the outside (mainly wind driven rain), the entry of humidity from the inside through diffusion plays an important role. In the presented study, high performance insulation materials with nanostructure based on silicon dioxide and polyurethane are compared to conventional material based on wood fiber from a hygrothermal point of view by analyzing in situ measurements and simulations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call