Abstract

In this work, we focus on the numerical approximation of a hybrid fluid-kinetic plasma model for electrons, in which energetic electrons are described by a Vlasov kinetic model whereas a fluid model is used for the cold population of electrons. First, we study the validity of this hybrid modeling in a two dimensional context (one dimension in space and one dimension in velocity) against the full (stiff) Vlasov kinetic model and second, a four dimensional configuration is considered (one dimension in space and three dimensions in velocity) following [1]. To do so, we consider two numerical Eulerian methods. The first one is based on the Hamiltonian structure of the hybrid system and the second approach, which is based on exponential integrators, enables to derive high order integrator and remove the CFL condition induced by the linear part. The efficiency of these methods, which are combined with an adaptive time stepping strategy, is discussed in the different configurations and in the linear and nonlinear regimes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.