Abstract

Different hexamethyldisiloxane (HMDSO) dissociation processes are investigated by means of absorption spectroscopy and mass spectrometry. All of these processes are expected to occur in plasma containing Ar-HMDSO gas mixture. We successively study interactions of the HMDSO molecule with electrons (energy ranges from 15 to 70 eV), with Ar((3)P(2)) metastable species (internal energy 11.55 eV) and with VUV photon (7.3 to 10.79 eV). The studies of HMDSO interactions with Ar((3)P(2)) and VUV photon provide new results concerning the dissociation pathways and the collision cross-sections. In the case of Ar((3)P(2)), the dissociation mechanisms result mainly in Si-C or Si-O bond breaking, producing SiMe(2,1) radicals. Less efficient mechanisms involve also Si-C and Si-O bond breaking producing Me, Si(2)Me(5)O, or SiMe(3), on one hand, and, on the other hand, Si-C and C-H bond breaking producing Si(2)Me(4)OH. In the case of photon interaction, the dissociation process is more selective and mainly produces Si(2)OMe(5) pentadisiloxane and methyl radicals due to Si-C bond breaking. Si-O bond breaking produces also SiMe(3) in a lower concentration. Dissociation cross-section values of HMDSO ranging from σ = 45 × 10(-20) m(2) to 180 × 10(-20) m(2) and from σ = 0.7 × 10(-22) m(2) to 18.3 × 10(-22) m(2), correspond to a global dissociation mechanism by Ar((3)P(2)) collision and to a selective dissociation mechanism (producing Si(2)OMe(5) and Me) by VUV photon interaction, respectively. All results are compared and discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call