Abstract

BackgroundSeveral algorithms from the literature were compared with the original random walk (RW) algorithm for brain perfusion heterogeneity quantification purposes. Algorithms are compared on a set of 210 brain single photon emission computed tomography (SPECT) simulations and 40 patient exams.MethodsFive algorithms were tested on numerical phantoms. The numerical anthropomorphic Zubal head phantom was used to generate 42 (6 × 7) different brain SPECT simulations. Seven diffuse cortical heterogeneity levels were simulated with an adjustable Gaussian noise function and six focal perfusion defect levels with temporoparietal (TP) defects. The phantoms were successively projected and smoothed with Gaussian kernel with full width at half maximum (FWHM = 5 mm), and Poisson noise was added to the 64 projections. For each simulation, 5 Poisson noise realizations were performed yielding a total of 210 datasets. The SPECT images were reconstructed using filtered black projection (Hamming filter: α = 0.5).The five algorithms or measures tested were the following: the coefficient of variation, the entropy and local entropy, fractal dimension (FD) (box counting and Fourier power spectrum methods), the gray-level co-occurrence matrix (GLCM), and the new RW.The heterogeneity discrimination power was obtained with a linear regression for each algorithm. This regression line is a mean function of the measure of heterogeneity compared to the different diffuse heterogeneity and focal defect levels generated in the phantoms. A greater slope denotes a larger separation between the levels of diffuse heterogeneity.The five algorithms were computed using 40 99mTc-ethyl-cysteinate-dimer (ECD) SPECT images of patients referred for memory impairment. Scans were blindly ranked by two physicians according to the level of heterogeneity, and a consensus was obtained. The rankings obtained by the algorithms were compared with the physicians' consensus ranking.ResultsThe GLCM method (slope = 58.5), the fractal dimension (35.9), and the RW method (31.6) can differentiate the different levels of diffuse heterogeneity. The GLCM contrast parameter method is not influenced by a focal defect contrary to the FD and RW methods. A significant correlation was found between the RW method and the physicians' classification (r = 0.86; F = 137; p < 0.0001).ConclusionsThe GLCM method can quantify the different levels of diffuse heterogeneity in brain-simulated SPECT images without an influence from the focal cortical defects. However, GLCM classification was not correlated with the physicians' classification (Rho = −0.099). The RW method was significantly correlated with the physicians' heterogeneity perception but is influenced by the existence of a focal defect.

Highlights

  • Several algorithms from the literature were compared with the original random walk (RW) algorithm for brain perfusion heterogeneity quantification purposes

  • The gray-level co-occurrence matrix (GLCM) method can quantify the different levels of diffuse heterogeneity in brain-simulated single photon emission computed tomography (SPECT) images without an influence from the focal cortical defects

  • The RW method was significantly correlated with the physicians' heterogeneity perception but is influenced by the existence of a focal defect

Read more

Summary

Introduction

Several algorithms from the literature were compared with the original random walk (RW) algorithm for brain perfusion heterogeneity quantification purposes. Physicians subjectively analyze the heterogeneity of medical images because of the lack of an objective and reliable method to quantify this parameter. In functional imaging, such as nuclear medicine, the analysis of image heterogeneity is complex because of a low signal-to-noise ratio and low spatial resolution. Artifacts from the reconstruction process are another type of noise superimposed on images dedicated to the exam's interpretation Because of this subjective aspect, quantification and analysis of the heterogeneity of medical images are complex and less reproducible. Each of these methods is derived from different mathematical theories and yields a different view/representation/perception of an image

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.