Abstract

A variety of wind farm control strategies exist in order to reduce unfavorable wake effects in large wind farms. While strategies like wake steering already reached a high maturity level, it is interesting to compare them to more recently proposed strategies. Such a comparison can form the basis for the development of a symbiotic wind farm control toolbox, from which a control strategy is chosen and activated depending on the operating conditions. The present study compares wake steering with helix control across a wide range of turbine spacings and wind directions using large-eddy simulation (LES). The size of the search space is made computationally tractable for LES by adopting a setup based on one physical upstream turbine and a distribution of virtual downstream turbines which do not exert any thrust force. It is found that helix control is beneficial for full wake overlap and turbine spacing of less than six rotor diameters whereas wake steering proves to be optimal further downstream and for partial wake overlap. Furthermore, the results show that the helix control setpoint in the proximity of full wake overlap scenarios is less susceptible to wind direction variations. This finding indicates that the combination of wake steering and helix control has potential for the design of a wind farm controller which is more robust in full wake overlap scenarios and can reduce the need for large yaw offset adjustments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.