Abstract

Abstract Cylindrical pin fin heat sinks are not used to cool a panel, which we have done so in the present work and tested it's performance against a traditional single-channel PV/T collector. An older 20 Watt polycrystalline solar cell photovoltaic panel with a standard efficiency of 11.7% is elevated to a high temperature by indoor halogen light of intensity 1378.4 W m−2 in this study. The temperature of 81.7 ± 2.3 °C temperature at the front and 88.6 °C at the rear under at 0 m2 s−1 wind speeds are lowered using a cylindrical pin fin heat sink (fin density 1.22 fin cm−2). A channel of aspect ratios α* = 0.08 was attached to the rear of the panel as the collector configuration. Temperatures dropped to 58.4 °C with heat sink and 47.9° using the collector. The analysis suggests that heat flux of 667.2 W m−2 at the rear of the bare panel with no cooling is enhanced by 30 and 41.5% by the heat sink and PV/T collector by natural methods. We strongly urge exploration of using the cylindrical pin fin heat sinks to cool the panel under stagnant wind conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.