Abstract

The chemically induced barley (Hordeum vulgare L.) mutation, agr, was found to be a simple recessive trait resulting in agravitropic roots and normal gravitropic shoots. The total seedling root growth was similar for mutant and wild-type roots, although the mutant had fewer roots per seed and greater elongation per root. Although the concentration of exogenous indole-3-acetic acid (IAA) required to reduce root growth by 50% (GR50) was 12 times greater for the agravitropic mutant, agravitropic and gravitropic roots were equally sensitive to exogenous applications of 2,4-dichlorophenoxyacetic acid (2,4-D) and naphthalene acetic acid (NAA). Root IAA contents, determined by high-pressure liquid chromatography (HPLC), were not different for gravitropes and agravitropes. The greater root elongation rates, lack of sensitivity to exogenous IAA, and normal endogenous IAA levels indicate that auxin-controlled growth regulation may be altered in the mutant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.