Abstract
Let R = ⊕n∈zRn be a ℤ-graded commutative Noetherian ring and let M be a ℤ-graded R-module. S. Goto and K. Watanabe introduced the graded Cousin complex *C(M)* for M, a complex of graded R-modules. Also one can ignore the grading on M and construct the Cousin complex C(M)* for M, discussed in earlier papers by the second author. The main results in this paper are that *C(M)* can be considered as a subcomplex of C(M)* and that the resulting quotient complex is always exact. This sheds new light on the known facts that, when M is non-zero and finitely generated, C(M)* is exact if and only if *C(M)* is (and this is the case precisely when M is Cohen-Macaulay).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.