Abstract

Microsatellite markers (simple sequence repeats, SSRs) are used for a wide range of crop genetic and breeding applications, including genetic diversity assessment, phylogenetic analysis, genotypic profiling and marker-assisted selection. Genomic SSR (gSSR) have attracted more attention because of abundance in plant genome, reproducibility, high level of polymorphism and codominant inheritance. Recently, the availability of data for expressed sequence tags (EST), has given more emphasis to EST-derived SSRs, which belong to the transcribed regions of DNA, and are expected to be more conserved and have a higher transferability rate across species than gSSR markers. In the present study, several gSSR and EST-SSR markers were investigated for their transferability and level of DNA polymorphism in different ancestral tetraploid and diploid Triticum and Aegilops species. The same gSSR and EST-SSR markers were also evaluated for their applicability in the phylogenetic analysis of wheat. Both gSSR and EST-SSR markers showed differences for the average transferability rate and the number of alleles/locus. Phylogenetic trees based on gSSR and EST-SSR markers were in accordance with phylogenetic relations based on cytogenetic and molecular analyses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.