Abstract

To evaluate the relationships among clones and open pollinated families from the same plus trees and to select elite breeding materials, growth, and wood characteristics of 33-year-old Pinus koraiensis clones and families were measured and analyzed. The results show that growth and wood characters varied significantly. The variation due to clonal effects was higher than that of family effects. The ratio of genetic to phenotypic coefficient of variation of clones in growth and wood traits was above 90%, and the repeatability of these characteristics was more than 0.8, whereas the ratio of genetic to phenotypic coefficient of variation of families was above 90%. The broad-sense heritability of all characteristics exceeded 0.4, and the narrow-sense family heritability of growth traits was less than 0.3. Growth characteristics were positively correlated with each other, but most wood properties were weakly correlated in both clones and families. Fiber length and width were positively correlated between clones and families. Using the membership function method, eleven clones and four families were selected as superior material for improved diameter growth and wood production, and two families from clonal and open-pollinated trees showed consistently better performance. Generally, selection of the best clones is an effective alternative to deployment of families as the repeatability estimates from clonal trees were higher than narrow-sense heritability estimates from open pollinated families. The results provide valuable insight for improving P. koraiensis breeding programs and subsequent genetic improvement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call