Abstract
The importance of digital security in today's technological era requires various innovations in creating a reliable security system for humans. Biometrics is an authentication method and the most effective system for performing personal recognition because biometrics have unique characteristics. Dorsal hand vein become biometrics for the individual recognition process in this study using feature extraction of gabor filters and neural network backpropagation to classify recognition into five classes of human individuals, which are expected to be able to provide a higher accuracy value when compared to research on the introduction of dorsal hand vein. This classification process has several stages, namely input image, image pre-processing, segmentation, feature extraction, and image classification. The test results show that the percentage of success based on the five test scenarios has an average value of 75%. In this study, the results of the greatest test accuracy in the fourth scenario were 91%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.