Abstract
Predictions of future events must be incorporated into the decision-making process. For tourism demand, forecasting is very important to help directors and investors to make decisions in operational, tactical, and strategic decisions. This study focuses on forecasting performance between Fuzzy Time Series and ARIMA to forecast the tourist arrivals in homestays in Pahang. The main objective of this study is to compare and identify the best method between Fuzzy Time Series and Autoregressive Integrated Moving Average (ARIMA) in forecasting the arrival of tourists based on the secondary data of tourist arrivals to homestay in Pahang from January 2015 to December 2018. ARIMA models are flexible and widely used in time-series analysis and Fuzzy Time Series which do not need large samples and long past time series. These two methods have been compared by using the mean square error (MSE) and mean absolute percentage error (MAPE) as the forecast measures of accuracy. The results show that Fuzzy Time Series outperforms the ARIMA. The lowest value of MSE and MAPE was obtained from using the Fuzzy Time Series method at values 2192305.89 and 11.92256, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.