Abstract
The goal of this paper is a theoretical and experimental comparison of two popular image segmentation algorithms: fuzzy connectedness (FC) and graph cut (GC). On the theoretical side, our emphasis will be on describing a common framework in which both of these methods can be expressed. We will give a full analysis of the framework and describe precisely a place which each of the two methods occupies in it. Within the same framework, other region based segmentation methods, like watershed, can also be expressed. We will also discuss in detail the relationship between FC segmentations obtained via image forest transform (IFT) algorithms, as opposed to FC segmentations obtained by other standard versions of FC algorithms. We also present an experimental comparison of the performance of FC and GC algorithms. This concentrates on comparing the actual (as opposed to provable worst scenario) algorithms' running time, as well as influence of the choice of the seeds on the output.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.