Abstract

Weighted Linear Combination (WLC) is one of the most popular methods for Multiple Criteria Decision-making (MCDM) in the field of geoinformatics. A typical utilization of WLC is in land suitability assessment and optimal location detection. The application of WLC requires the determination of weights for each criterion used in the MCDM problem. In this paper, we focus on a fuzzy Analytical Hierarchy Process (AHP) which is based on pairwise comparisons of criterion importance and, unlike the classic (crisp) AHP, it can contain uncertainty. This allows the user to include imprecise or incomplete knowledge in an MCDM problem. The theoretical part of the paper briefly describes fuzzy AHP and provides the necessary mathematical background. The practical part of the contribution is focused on testing two algorithms for weight determination in fuzzy AHP—the extent analysis method and a method based on constrained fuzzy arithmetic. The methods are described in terms of the amount of uncertainty in the result, the resulting value, and overall appropriateness. A four level fuzzy AHP problem containing one main goal, three criteria and twenty-four subcriteria is solved as a case study using both methods. Based on the results obtained, the recommendations for fuzzy AHP utilization in spatial suitability assessment are made.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.