Abstract

Summary This paper presents a discussion of fractured-horizontal-well performance in millidarcy permeability (conventional) and micro- to nanodarcy permeability (unconventional) reservoirs. It provides interpretations of the reasons to fracture horizontal wells in both types of formations. The objective of the paper is to highlight the special productivity features of unconventional shale reservoirs. By using a trilinear-flow model, it is shown that the drainage volume of a multiple-fractured horizontal well in a shale reservoir is limited to the inner reservoir between the fractures. Unlike conventional reservoirs, high reservoir permeability and high hydraulic-fracture conductivity may not warrant favorable productivity in shale reservoirs. An efficient way to improve the productivity of ultratight shale formations is to increase the density of natural fractures. High natural-fracture conductivities may not necessarily contribute to productivity either. Decreasing hydraulic-fracture spacing increases the productivity of the well, but the incremental production gain for each additional hydraulic fracture decreases. The trilinear-flow model presented in this work and the information derived from it should help the design and performance prediction of multiple-fractured horizontal wells in shale reservoirs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.