Abstract
BackgroundThe interest in MR-only workflows is growing with the introduction of artificial intelligence in the synthetic CT generators converting MR images into CT images. The aim of this study was to evaluate several commercially available sCT generators for two anatomical localizations.MethodsFour sCT generators were evaluated: one based on the bulk density method and three based on deep learning methods. The comparison was performed on large patient cohorts (brain: 42 patients and pelvis: 52 patients). It included geometric accuracy with the evaluation of Hounsfield Units (HU) mean error (ME) for several structures like the body, bones and soft tissues. Dose evaluation included metrics like the Dmean ME for bone structures (skull or femoral heads), PTV and soft tissues (brain or bladder or rectum). A 1%/1 mm gamma analysis was also performed.ResultsHU ME in the body were similar to those reported in the literature. Dmean ME were smaller than 2% for all structures. Mean gamma pass rate down to 78% were observed for the bulk density method in the brain. Performances of the bulk density generator were generally worse than the artificial intelligence generators for the brain but similar for the pelvis. None of the generators performed best in all the metrics studied.ConclusionsAll four generators can be used in clinical practice to implement a MR-only workflow but the bulk density method clearly performed worst in the brain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.