Abstract

BackgroundThe effective use of plant biomass for biofuel and bioproduct production requires a comprehensive glycosyl residue composition analysis to understand the different cell wall polysaccharides present in the different biomass sources. Here we compared four methods side-by-side for their ability to measure the neutral and acidic sugar composition of cell walls from herbaceous, grass, and woody model plants and bioenergy feedstocks.ResultsArabidopsis, Populus, rice, and switchgrass leaf cell walls, as well as cell walls from Populus wood, rice stems, and switchgrass tillers, were analyzed by (1) gas chromatography–mass spectrometry (GC–MS) of alditol acetates combined with a total uronic acid assay; (2) carbodiimide reduction of uronic acids followed by GC–MS of alditol acetates; (3) GC–MS of trimethylsilyl (TMS) derivatives; and (4) high-pressure, anion-exchange chromatography (HPAEC). All four methods gave comparable abundance ranking of the seven neutral sugars, and three of the methods were able to quantify unique acidic sugars. The TMS, HPAEC, and carbodiimide methods provided comparable quantitative results for the specific neutral and acidic sugar content of the biomass, with the TMS method providing slightly greater yield of specific acidic sugars and high total sugar yields. The alditol acetate method, while providing comparable information on the major neutral sugars, did not provide the requisite quantitative information on the specific acidic sugars in plant biomass. Thus, the alditol acetate method is the least informative of the four methods.ConclusionsThis work provides a side-by-side comparison of the efficacy of four different established glycosyl residue composition analysis methods in the analysis of the glycosyl residue composition of cell walls from both dicot (Arabidopsis and Populus) and grass (rice and switchgrass) species. Both primary wall-enriched leaf tissues and secondary wall-enriched wood/stem tissues were analyzed for mol% and mass yield of the non-cellulosic sugars. The TMS, HPAEC, and carbodiimide methods were shown to provide comparable quantitative data on the nine neutral and acidic sugars present in all plant cell walls.

Highlights

  • The effective use of plant biomass for biofuel and bioproduct production requires a comprehensive glycosyl residue composition analysis to understand the different cell wall polysaccharides present in the different biomass sources

  • We compare the four most common sugar composition methods for their ability to reproducibly quantify the greatest number of different types of sugars present in cell walls of dicot and grass species

  • Sensitive, accurate, and preferably high-throughput analytical method(s) are needed to identify and quantify the different major and minor neutral and acidic sugars that constitute the noncellulosic polysaccharides of plant cell walls

Read more

Summary

Introduction

The effective use of plant biomass for biofuel and bioproduct production requires a comprehensive glycosyl residue composition analysis to understand the different cell wall polysaccharides present in the different biomass sources. We compared four methods side-by-side for their ability to measure the neutral and acidic sugar composition of cell walls from herbaceous, grass, and woody model plants and bioenergy feedstocks. All plant cell walls contain the same general types of polymers, the specific amounts of the different polymers and their unique glycosyl residue content and linkages vary in different types of plants (e.g., woody versus herbaceous dicots versus grasses) and in different tissues and cell types. We compare the four most common sugar composition methods for their ability to reproducibly quantify the greatest number of different types of sugars present in cell walls of dicot and grass species. The goal was to provide researchers a reference source for selecting a preferred sugar analysis method for comparison of cell walls from different species, cell types, and/or walls from native versus mutant/ transgenic/variant plants

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call