Abstract

Tropical Rainfall Measuring Mission (TRMM) and ERA-Interim forecast data analyzed using second-order autoregressive AR(2) and space-time-spectra analysis methods (respectively) revealed contrasting results for predicting Madden Julian Oscillation (MJO) and Convectively Coupled Equatorial Waves (CCEW) phenomena over Indonesia. This research used the same 13-year series of daily TRMM 3B42 V7 derived datasets and ERA-Interim reanalysis model datasets from the European Center for Medium-Range Weather Forecasts (ECMWF) for precipitation forecasts. Three years (2016 to 2018) of the filtered 3B42 and ERA-Interim forecast data was then used to evaluate forecast accuracy by looking at correlation coefficients for forecast leads from day +1 through day +7. The results revealed that rainfall estimation data from 3B42 provides better results for the shorter forecast leads, particularly for MJO, equatorial Rossby (ER), mixed Rossby-gravity (MRG), and inertia-gravity phenomena in zonal wavenumber 1 (IG1), but gives poor correlation for Kelvin waves for all forecast leads. A consistent correlation for all waves was achieved from the filtered ERA-Interim precipitation forecast model, and although this was quite weak for the first forecast leads it did not reach a negative correlation in the later forecast leads except for IG1. Furthermore, Root Mean Square Error (RMSE) was also calculated to complement forecasting skills for both data sources, with the result that residual RMSE for the filtered ERA-Interim precipitation forecast was quite small during all forecast leads and for all wave types. These findings prove that the ERA-Interim precipitation forecast model remains an adequate precipitation model in the tropics for MJO and CCEW forecasting, specifically for Indonesia.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call