Abstract

Results are presented of direct numerical simulations of incompressible, homogeneous magnetohydrodynamic turbulence without a mean magnetic field, subject to different mechanical forcing functions commonly used in the literature. Specifically, the forces are negative damping (which uses the large-scale velocity field as a forcing function), a nonhelical random force, and a nonhelical static sinusoidal force (analogous to helical ABC forcing). The time evolution of the three ideal invariants (energy, magnetic helicity and cross helicity), the time-averaged energy spectra, the energy ratios and the dissipation ratios are examined. All three forcing functions produce qualitatively similar steady states with regards to the time evolution of the energy and magnetic helicity. However, differences in the cross helicity evolution are observed, particularly in the case of the static sinusoidal method of energy injection. Indeed, an ensemble of sinusoidally-forced simulations with identical parameters shows significant variations in the cross helicity over long time periods, casting some doubt on the validity of the principle of ergodicity in systems in which the injection of helicity cannot be controlled. Cross helicity can unexpectedly enter the system through the forcing function and must be carefully monitored.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.