Abstract
The long-pulse (200-350 micros) Holmium: YAG (Ho: YAG) laser (lambda = 2.12 microm) is used extensively in urology for laser lithotripsy. The long-pulse Erbium: YAG (Er: YAG) laser (lambda = 2.94 microm) fragments urinary calculi up to 5 times more efficiently than the Ho: YAG laser, however, no optical fibers are available to transmit efficiently 2.94 microm laser light for laser lithotripsy. We report results of a study evaluating a fluoride glass fiber to transmit Er: YAG laser light for laser lithotripsy and compare to a sapphire fiber that provides good transmission of Er: YAG light at low irradiance. The fluoride fiber provides superior light transmission efficiency over the sapphire fiber at an Er: YAG wavelength (2.94 microm). The sapphire fiber provides a more durable and robust delivery waveguide than the fluoride fiber when ablating urinary calculi in contact mode. Results of our study suggest that further development to improve performance of fluoride fibers for laser lithotripsy is warranted.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.