Abstract

Methane hydrates are considered as the future energy due to its vast resource volume and high energy density. The fluid production and thermal response of two types hydrate-bearing sediments (i.e., excess-gas and excess-water) under controlled depressurization are still unclear and warrant investigation. In this study, we devised two different hydrate-bearing sediments (HBS) synthesis methods and synthesized excess-water (SA = ∼27.2%) and excess-gas (SG = ∼26.5%) HBS with SH of 72.0%. The hydrate dissociation kinetics and fluid production behavior were examined under three bottom-hole pressures, i.e., 3.0, 5.0, and 7.0 MPa. Gas production from the excess-gas HBS follows two-stage profile, while continuous gas production was observed after SG reaches 6.0% in the excess-water HBS. Water production from excess-gas HBS was significantly delayed compared with excess-water HBS and only started when SA reached above 22.5%. A logarithmic water production profile was observed in all cases. Rapid temperature drop due to hydrate dissociation is significantly delayed in excess-gas cases. Heat transfer from surroundings is relatively slow due to its low composite thermal conductivity. The findings on the contrast fluid production behavior between excess-gas and excess-water cases shed light on optimizing production strategies for future field production trials from these two different types reservoirs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call