Abstract

PurposeThe high efficacy of flow diverters (FD) in the case of wide-neck aneurysms is well demonstrated, yet new challenges have arisen because of reported posttreatment failures and the growing number of new generation of devices. Our aim is to present a measurement-supported in silico workflow that automates the virtual deployment and subsequent hemodynamic analysis of FDs. In this work, the objective is to analyze the effects of FD deployment variability of two manufacturers on posttreatment flow reduction.MethodsThe virtual deployment procedure is based on detailed mechanical calibration of the flow diverters, while the flow representation is based on hydrodynamic resistance (HR) measurements. Computational fluid dynamic simulations resulted in 5 untreated and 80 virtually treated scenarios, including 2 FD designs in nominal and oversized deployment states. The simulated aneurysmal velocity reduction (AMVR) is correlated with the HR values and deployment scenarios.ResultsThe linear HR coefficient and AMVR revealed a power-law relationship considering all 80 deployments. In nominal deployment scenarios, a significantly larger average AMVR was obtained (60.3%) for the 64-wire FDs than for 48-wire FDs (51.9%). In oversized deployments, the average AMVR was almost the same for 64-wire and 48-wire device types, 27.5% and 25.7%, respectively.ConclusionThe applicability of our numerical workflow was demonstrated, also in large-scale hemodynamic investigations. The study revealed a robust power-law relationship between a HR coefficient and AMVR. Furthermore, the 64 wire configurations in nominal sizing produced a significantly higher posttreatment flow reduction, replicating the results of other in vitro studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.