Abstract

AbstractThis paper presents a comparison among different flexibility models of elastic elements to be implemented in multibody simulations of compliant mechanisms. In addition to finite-element analysis and a pseudo-rigid body model, a novel matrix-based approach, called the Displaced Compliance Matrix Method, is proposed as a further flexibility model to take into account geometric nonlinearities. According to the proposed formulation, the representation of the elastic elements is obtained by resorting to the ellipse of elasticity theory, which guarantees the definition of the compliance matrices in diagonal form. The ellipse of elasticity is also implemented to predict the linear response of the compliant mechanism. Multibody simulations are performed on compliant systems with open-loop and closed-loop kinematic chains, subject to different load conditions. Beams with uniform cross-section and initially curved axis are considered as flexible elements. For each flexibility model, accuracies of displacements and rotations, and computational time, are evaluated and compared. The numerical results have been also compared to the data obtained through a set of experimental tests.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.