Abstract

To compare the design, metallurgy, mechanical performance, and canal preparation of 5 rotary systems. A total of 735 25-mm NiTi instruments (sizes 0.17[0.18]/.02v, 0.20/.04v, 0.20/.07v, 0.25/.08v, 0.30/.09v) from ProTaper Gold, ProTaper Universal, Premium Taper Gold, Go-Taper Flex, and U-File systems were compared regarding overall geometry and surface finishing (stereomicroscopy and scanning electron microscopy), nickel and titanium ratio (energy-dispersive spectroscopy), phase transformation temperatures (differential scanning calorimetry), mechanical performance (torsional and bending tests), and unprepared canal surface (micro-CT). One-way ANOVA and Mood's median tests were used for statistical comparisons with a significance level set at 5%. Stereomicroscopic analysis showed more spirals and high helical angles in the Premium Taper Gold system. All sets of instruments had symmetrical spirals, no radial lands, no major defects, and an almost equiatomic ratio between nickel and titanium elements, while differences were observed in their tips' geometry and surface finishing. At room temperature (20°C), DSC test revealed martensitic characteristics for ProTaper Gold and Go-Taper Flex, and mixed austenite plus R-phase for the Premium Taper Gold, while ProTaper Universal and U-Files had full austenitic characteristics. Overall, larger instruments had higher torque resistance and bending load values than smaller ones, while a lack of consistency and mixed values were observed in the angle of rotation. The 0.25/.08v and 0.30/.09v instruments of ProTaper Universal and U-File had the highest maximum torques, the lowest angles of rotation, and the highest bending loads than other tested systems (P < .05). No significant difference was noted regarding the untouched root canal walls after preparation with the tested systems (P > .05). Although differences observed in the overall geometry and phase transformation temperatures have influenced the results of mechanical tests, unprepared canal surface areas were equivalent among systems. Root canal preparation systems with similar geometries might present different mechanical behaviors but equivalent shaping ability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.