Abstract

Dermal exposure to metals has previously received less attention than oral/inhalation exposure. Nonetheless, human health risk is significant for certain contaminants and exposure scenarios. The present study aims to (1) characterize two certified reference soils (SQC001, BGS 102); and (2) assess Cr, Ni, Pb, and Zn dermal bioaccessibility via in vitro assays using three synthetic sweat formulations (EN 1811, pH 6.5 (Sweat A), NIHS 96-10, pH 4.7 (Sweat B), and a more complex pH 5.5 formulation containing amino acids (Sweat C)) and two sebum formulations. Metals bioaccessibility in sweat followed Sweat B > Sweat C > Sweat A, attributed to sweat B lower pH. Dermal bioaccessibility in both sebum formulations was lower than 1% for Ni and Pb and below 9% for Cr and Zn, possibly due to low affinity of metals for non-polar lipids. It must be noted that bioaccessible Zn in BGS 102 was higher when extracted with synthetic sebum compared to any of the synthetic sweat formulations. Metal bioaccessibility in sweat was considerably higher for SQC001 (up to 76.6% for Zn using Sweat B) than for BGS 102 (ranging between 0.02 and 1.3% for all elements and all sweat formulations), attributed to higher pH, higher organic carbon, and higher cation exchange capacity of reference soil BGS 102. Sebum formulations spiked with metals generally entailed low metal recovery (except for Zn), which may explain overall low bioaccessibility values for sebum. Sebum and sweat formulation, and soil properties seem to control in vitro dermal bioaccessibility of metals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.