Abstract

A first principles microfiltration model based on shear-induced diffusion is compared to experiments performed on the clarification of beer. After performing an identifiability and sensitivity analysis, the model parameters are estimated using global minimization of the sum of least squares. The model is compared to different series of experiments, where either crossflow or permeate flux is varied. This study is concluded with a parameter study on the scaling of the filtration time with various model parameters. We have found that the filtration time primarily depends on two dimensionless numbers, namely the normalized critical distance for cake layer formation, and the dimensionless time required to plug all pores in the selective layer. We have found that there is an optimal setting of these parameters, rendering a maximal amount of filtrated beer in one cycle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.