Abstract

The spectral stochastic finite element method (SSFEM) aims at constructing a probabilistic representation of the response of a mechanical system, whose material properties are random fields. The response quantities, e.g. the nodal displacements, are represented by a polynomial series expansion in terms of standard normal random variables. This expansion is usually post-processed to obtain the second-order statistical moments of the response quantities. However, in the literature, the SSFEM has also been suggested as a method for reliability analysis. No careful examination of this potential has been made yet. In this paper, the SSFEM is considered in conjunction with the first-order reliability method (FORM) and with importance sampling for finite element reliability analysis. This approach is compared with the direct coupling of a FORM reliability code and a finite element code. The two procedures are applied to the reliability analysis of the settlement of a foundation lying on a randomly heterogeneous soil layer. The results are used to make a comprehensive comparison of the two methods in terms of their relative accuracies and efficiencies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.