Abstract

Three different finite-difference routines were compared for solving the nonlinear, coupled, partial differential and algebraic equations that describe pressure swing adsorption processes. A successive substitution method (SS), a block LU decomposition procedure (BLUD), and the method of lines approach with adaptive time stepping (DASSL) were used to simulate and compare the computation times required to reach the periodic state for two different PSA systems: PSA-air drying and PSA-solvent vapor recovery. For both systems, the results showed that DASSL was nearly twice as fast as BLUD, whereas SS was nearly an order of magnitude slower than BLUD. DASSL and BLUD were also very robust and accurate, as nearly identical bed profiles were obtained from both methods under both transient and periodic state conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call