Abstract

In this article, five feedback magnetic attitude control algorithms are compared in terms of stabilization accuracy and implementation problems. The control strategies are classic Lyapunov control with scalar gain; the same control strategy with matrix gain and a specific gain-tuning procedure; sliding control with a variable surface; a linear quadratic regulator constructed for a special time-invariant system of a higher degree than the initial time-varying system; and a special controllable trajectory developed using particle swarm optimization. A new sliding surface construction method is proposed in this paper. Surface parameters were changed in every control iteration to ensure that the required control torque component along the geomagnetic induction vector was small. The advantages and drawbacks of the considered methods and their applicability for different target attitudes are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call