Abstract

BackgroundThe majority of chicken microbiota studies have used the ceca as a sampling site due to the specific role of ceca in chicken productivity, health and wellbeing. However, sampling from ceca and other gastrointestinal tract sections requires the bird to be sacrificed. In contrast, fecal sampling does not require sacrifice and thus allows the same bird to be sampled repeatedly over time. This is a more meaningful and preferred way of sampling as the same animals can be monitored and tracked for temporal studies. The commonly used practice of selecting a subset of birds at each time-point for sacrifice and sampling introduces added variability due to the known animal to animal variation in microbiota.ResultsCecal samples and fecal samples via cloacal swab were collected from 163 birds across 3 replicate trials. DNA was extracted and 16S rRNA gene sequences amplified and pyrosequenced to determine and compare the phylogenetic profile of the microbiota within each sample. The fecal and cecal samples were investigated to determine to what extent the microbiota found in fecal samples represented the microbiota of the ceca.It was found that 88.55% of all operational taxonomic units (OTUs), containing 99.25% of all sequences, were shared between the two sample types, with OTUs unique for each sample type found to be very rare. There was a positive correlation between cecal and fecal abundance in the shared sequences, however the two communities differed significantly in community structure, represented as either alpha or beta diversity. The microbial populations present within the paired ceca of individual birds were also compared and shown to be similar.ConclusionsFecal sample analysis captures a large percentage of the microbial diversity present in the ceca. However, the qualitative similarities in OTU presence are not a good representation of the proportions of OTUs within the microbiota from each sampling site. The fecal microbiota is qualitatively similar to cecal microbiota but quantitatively different. Fecal samples can be effectively used to detect some shifts and responses of cecal microbiota.

Highlights

  • The majority of chicken microbiota studies have used the ceca as a sampling site due to the specific role of ceca in chicken productivity, health and wellbeing

  • We were interested to examine the relationship between the population structure of cecal and fecal microbiotas to determine if fecal sampling via cloacal swabbing is an effective proxy for cecal sampling

  • Cecal microbiota is richer in operational taxonomic units (OTUs) and has fewer dominant OTUs compared to fecal microbiota A total of 1,770,812 sequences were obtained from the 326 samples included in this analysis (163 birds with adequate recovery of sequences from both cecal and fecal samples)

Read more

Summary

Introduction

The majority of chicken microbiota studies have used the ceca as a sampling site due to the specific role of ceca in chicken productivity, health and wellbeing. Cloacal sampling, which is effectively a reliable and fast method of collecting fresh fecal samples from a specific bird, has the great advantage that it is easy to obtain a series of samples from the one bird over time, unlike the case with cecal samples where it is usual to sacrifice the bird to recover a sample and so only a single time-point snapshot can be obtained for any one bird. This has meant that temporal studies of cecal microbiota have had to rely on population sampling with different birds studied at each time point. If the relationship between fecal and cecal samples was understood and consistent fecal samples could be used to determine at least some elements of the microbiota present in the ceca

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call