Abstract

We compare fast black-box boundary element methods on parametric surfaces in R3. These are the adaptive cross approximation, the multipole method based on interpolation, and the wavelet Galerkin scheme. The surface representation by a piecewise smooth parameterization is in contrast to the common approximation of surfaces by panels. Nonetheless, parametric surface representations are easily accessible from computer aided design (CAD) and are recently topic of the studies in isogeometric analysis. Especially, we can apply two-dimensional interpolation in the multipole method. A main feature of this approach is that the cluster bases and the respective moment matrices are independent of the geometry. This results in a superior compression of the far-field compared to other cluster methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.