Abstract
A hit-and-run (HR) crash occurs when the driver of the offending vehicle flees the crash scene without reporting it or aiding the victims. The current study aimed at contributing to existing literatures by comparing factors which might affect the crash severity in HR and non-hit-and-run (NHR) crashes. The data was extracted from the police-reported crash data from September 2017 to August 2018 within the City of Chicago. Two multinomial logistic regression models were established for the HR and NHR crash data, respectively. The odds ratio (OR) of each variable was used to quantify the impact of this variable on the crash severity. In both models, the property damage only (PDO) crash was selected as the reference group, and the injury and fatal crash were chosen as the comparison group. When the injury crash was taken as the comparison group, it was found that 12 variables contributed to the crash severities in both HR and NHR model. The average percentage deviation of OR for these 12 variables was 34%, indicating that compared with property damage, HR crashes were 34% more likely to result in injuries than NHR crashes on average. When fatal crashes were chosen as the comparison group, 2 variables were found to be statistically significant in both the HR and the NHR model. The average percentage deviation of OR for these 2 variables was 127%, indicating that compared with property damage, HR crashes were 127% more likely to result in fatalities than NHR crashes on average.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.