Abstract

Objectives. Synthesis and comparative analysis of the extractive distillation flowsheets for aqueous mixtures of solvents utilized in pharmaceutical industries using the example of a methanol−tetrahydrofuran−water system with various compositions. The ternary system contains two minimally boiling azeotropes that exist in a vapor–liquid phase equilibrium. To evaluate the selective effect of glycerol, the phase equilibria of the methanol–tetrahydrofuran–water and methanol–tetrahydrofuran–water–glycerol systems at 101.32 kPa were studied.Methods. The calculations were carried out in the Aspen Plus V.9.0 software package. The vapor–liquid equilibria were simulated using the non-random two-liquid (NRTL) equation with the binary interaction parameters of the software package database. To account for the non-ideal behavior of the vapor phase, the Redlich–Kwong equation of state was used. The calculations of the extractive distillation schemes were carried out at 101.32 kPa.Results. The conceptual flowsheets of extractive distillation are proposed. The flowsheets consist of three (schemes I–III) or four (scheme IV) distillation columns operating at atmospheric pressure. In schemes I and II, the extractive distillation of the mixtures is carried out with tetrahydrofuran isolation occurring in the distillate stream. Further separation in the schemes differs in the order of glycerol isolation: in the third column for scheme I (traditional extractive distillation complex) or in the second column for scheme II (two-column extractive distillation complex + methanol/water separation column). Sсheme III caters to the complete dehydration of the basic ternary mixtures, followed by the extractive distillation of the azeotropic methanol–tetrahydrofuran system, also with glycerol. Sсheme IV includes a preconcentration column (for the partial removal of water) and a traditional extractive distillation complex.Conclusions. According to the criterion of least energy consumption for separation (the total load of the reboilers of distillation columns), sсheme I (a traditional complex of extractive distillation) is recommended. Additionally, the energy expended for the separation of the basic equimolar mixture using glycerol as the extractive agent was compared with that expended using another selective agent: 1,2-ethanediol. Glycerol is an effective extractive agent because it reduces energy consumption, in comparison with 1,2-ethanediol, by more than 5%.

Highlights

  • Synthesis and comparative analysis of the extractive distillation flowsheets for aqueous mixtures of solvents utilized in pharmaceutical industries using the example of a methanol−tetrahydrofuran−water system with various compositions

  • Благодарности Работа выполнена при финансовой поддержке гранта Российского научного фонда (проект No 19-19-00620)

Read more

Summary

Objectives

Synthesis and comparative analysis of the extractive distillation flowsheets for aqueous mixtures of solvents utilized in pharmaceutical industries using the example of a methanol−tetrahydrofuran−water system with various compositions. The calculations of the extractive distillation schemes were carried out at 101.32 kPa. Results. Sсheme III caters to the complete dehydration of the basic ternary mixtures, followed by the extractive distillation of the azeotropic methanol–tetrahydrofuran system, with glycerol. For citation: Raeva V.M., Dubrovsky A.M. Comparison of extractive distillation flowsheets for methanol–tetrahydrofuran–water mixtures. Диаграммы изолиний относительной летучести компонентов базовой системы метанол (1)−тетрагидрофуран (2)−вода (3) приведены на рис. Летучесть тетрагидрофурана относительно воды (α23) в трехкомпонентных смесях также увеличивается Воды и глицерина однонаправлено, при экстрактивной ректификации базовых смесей прогнозируется концентрирование тетрагидрофурана в дистиллате. При разделении базовых смесей с высоким содержанием воды потребуется вводить меньшее количество агента. 2. Диаграммы относительной летучести компонентов для системы метанол (1)−тетрагидрофуран (2)−вода (3). Для сравнения выбраны составы базовых смесей (х0F) с различным содержанием воды, расположенные на секущей х1 : х2 = 1 : 1 Относительные летучести в присутствии разных количеств агента (4) приведены в табл

Селективное влияние
Findings
Поскольку при ЭР базовых смесей
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.