Abstract
The pathophysiology of many neuropsychiatric disorders is still poorly understood. Identification of biomarkers for these diseases could benefit patients due to better classification and stratification. Exosomes excreted into the circulatory system can cross the blood-brain barrier and carry a cell type-specific set of molecules. Thus, exosomes are a source of potential biomarkers for many diseases, including neuropsychiatric disorders. Here, we investigated exosomal proteins produced from human-induced pluripotent stem cells (iPSCs) and iPSC-derived neural stem cells, neural progenitors, neurons, astrocytes, microglia-like cells, and brain capillary endothelial cells. Of the 31 exosome surface markers analyzed, a subset of biomarkers were significantly enriched in astrocytes (CD29, CD44, and CD49e), microglia-like cells (CD44), and neural stem cells (SSEA4). To identify molecular fingerprints associated with disease, circulating exosomes derived from healthy control (HC) individuals were compared against schizophrenia (SCZ) patients and late-onset Alzheimer's disease (LOAD) patients. A significant epitope pattern was identified for LOAD (CD1c and CD2) but not for SCZ compared to HC. Thus, analysis of cell type- and disease-specific exosome signatures of iPSC-derived cell cultures may provide a valuable model system to explore proteomic biomarkers for the identification of novel disease profiles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.